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Abstract: A variant of thlt driunking phiii 41phers iil1gorithil of Ohandy and Misrit
is described and proved correct in it modulair way, using tile I/O automaton model
of Lynch and Tuttle. The algorithmn of Chaluuiy and Mkism is basd onl a particular
(lining philosophers algorithmn, and relies oRi vrtini properties of its implieit-
tion. The drinking philosophers algoritlini presentecd in this paper is able to use
an arbitrary dining philosophers itigoritlun ;-., it trite subroutine; uic-Ihing about
the implementation nieedls to lie known, only tt. it solves the flitting lphilOophicts
problem. Ani importmnt advantage of this inmdularity is that by substituting a
more time-efhicicut dining philo-opliers ;ilgorithmn thnn thle one used by Chandy
and Misra, a~ drinking philosophers 11lgori4lii1i withl 0(1) Wolst-citse waiting time is
obtained, whereas the diing philo ophiers itlgoridinn of Chundy and Misra, has
0(ii) worst-cnse waiting time (for is philos phi'r). Fo. iial 04fnitions are given to
distinguish the dirinking end dining phiilosophers prolemsi anid to spcify precisely
'Y( ./ig degrees of concurrency.

Key words: dining philosophiers, (listrihutedt algorithmns, dhinking philosophetrs,
modularity, resource allocation. tiniv complexity.

1. Introduction

We present a modular description and proof of correctness for anl Csgorithm, to

solve the drinking jphilosopherm problem in it message-passing distributed system.
Our algorithm uses anl arb~itralry solution to the (lining philosop~hers problem its a
subroutine; by using a. tiic-fflcicnt subroittine, one cani obtain it drinking philoso.
pliers algorithmi with 0(l) worst-case waiting time. Formal definitions are given to
distinguish the drinking and dining p)hilosophers problems and to specify precisely
varying degrees of concurrency.

The drinking philosophers problem is at cynaimic variant due to Ohancly and
Mfisra (419S4) of the dlining philosophers problem, at much-studied resource alloca-
tion, problem. In the original dining philosophers p~rolem of Dijkstra (1971), five
philosophers (processes) are arrangedl in n ring with one fork (resource) b~etween
each pair of neighbors, and in order to eat. ((IC work), it philosopher must have ex-
clusive access to b~oth of its adjacent forks. A more general version of the problem
allows any number of processes and puts no restrictions onl which processes share
resources. In the drinking philosophers problem, for ced' process there is a maxi-
mum set of resources that it can request. andl each time a process wishes to do some
work, it may request. an arb~itrary, subset of its maximum set.



Our drinking philosophers algorithm is i variant of the one of handy all( Misra,
(1984). Their algorithm is based oil a tpartivlnr dining philoso)hers algorithm, and
relies on certain properties of its ianpleuentattion. Oor drinking philosophers algo-
rithm is able to use an arbitrary dintiug philosophers algorithm as a. true subroutine;
nothing about the implenentation it-,ds to lx, known. only that it solves the dining
l)hilosvi)hers problim. We show that in a systm of n philosol)hers the maximum
waiting time for a drinking philosphvr 14) enter its critical region is roughly equal to
the maximum waiting time for a dininig philo Mophlr to eter its critical region in the
subroutine. Thus, by rephlcing the dining philosoplrs adgorithn of Chandy awd
Misra (1984), which has waiting time 0(o). with a dining philosophers algorithm
such as the one of Lynch (19M1), which has waitiig time 0(1), we obtain a. more
efficient drinking philosophers algorithm.

We provide definitions that distinguish tte drinking and dining philosophers
problem, and that specify precisely varying degrees of concurrency. We use the
model of Lynch arw iTuttle (19S7), which is ttsftl for stating properties that concern
the infinite behavior of a system, such us iso-deadlock and no-lockout, and which
supports modular algorithm design and verification. This model, together with the
particular definitions developed in this paper for expressing the safety and liveness
properties for resource allocation problemns, make po~ssible a clear and precise proof
of correctness for our construction.

In Section 2, the dining philosophers and drinking philowol)her.s problems are

defined. In Section 3, we describe our algorithmn, is an automiaton. Section 4
contains the proof of correctness of our algorithm, and Section 5 analyzes the per-
formance of our algorithm with respect to vorious complexity measures. Section 6
contains our conclusions.

2. Problem Statement

There are n user processes in the system being modeled, and at various times,
each one needs some of the system resources. Only one user at a time may have
access to any one resource. Each user's states are partitioned into four regions. In
its trying region, the user is vying for access to its required resources. Once the

resources are obtained, the user may enter its c:rilical region. When the user is
through with the resources, it enters ins exit rcgion, which usually involves some
"cleaning up" activities. Otherwi.e, the usesr is in its re7taindcr region. The user

cycles- through these four regions.



A resource allocation nlgoritlun devides which user gets which resources at
which time; thus, it supplies the code for the trying and exit regions. A distributed
resource allocation algorithm consists of ont, component for each user; the compo-
nents communicate with each other by messa;ge passing.

We define two resource allocation problems, dining philosophers and drinking
philosophers, as external schedule modules. that is, as sets of allowable interactions
between inputs and outputs. (See Appendix A for at summary of the I/O automaton
model of Lynch and Tuttle (lOS7).) We, imagine an automaton that, given input
from some number of users informing t he, ittomaton of their desire to gain or
give tp a set U of resources (with input ictions T(U) and EB(U) for each user i).
decides which users are allowed to enter their critical and remainder regions at which
times (with output actions C(U) and R1(U)). The automaton, then, represents tile

algorithm used to allocate the resources.

In the dining philosophers problem. varli miser (or philosoplher) always requests

the same set of resources. In the drinking philosophers problem, each user call
request a different set of resources each time it enters its trying region.

We consider several versions of the dining mind drinking philosophers problems,
each satisfying successively stronger liveness properties. First we define the basic
dining and drinking philosophers problems., which only satisfy safety conditions.

Then the no-deadlock versions are defined, in which as long as sonic user is in
its trying region, eventually sonic user enters its critcal region. In the no-lockout
versions, tny user that enters its trying region eventually enters its critical region.
The no-deadlock and no-lockout conditions assume that no user k.eps resources
forever.

A dining philosophers algoritlm can Ie used to solve the drink:ing philosophers
problem by treating each resource request a,, it request for the entire set of resources
which that user will ever need. However. users may be blocked unnecessarily in
such a scheme. A preferable sohltion would not. rtide out two users that share a
resource from entering their critical regions similtaneously, if their current resource
requirements are disjoint. We capture part. of this intuition by defining the "more-
concurrent" condition for the drinking philosoplhers )roblem - if a user requests a
set of resources, none of which is crrently being sought or used by anotber user,
then the first user eventually enters its critical region, even if some other resources
are never relinquished. (In our conclusions we discuss even stronger forms of the
drinking philosophers problem.)

41



Let S be a finite non-empty set of re.ources. D,:finc an i-Itscr resource require.
ment to be a collcct'on of n sets Shl 1 5 i < it, such that each Si is a 1.on-empty
subset of S, and no resource is in iore than two S'i. The, Inst restriction makes
the algorithm much simpler to describe and reamn about, but is not substantial.
If a resotrce is shared by k users, then it can be represented by k choose 2 virtual
resources, one shared between each pair of the original k users; to gain the "real"
resource, a user must gain the k - 1 virtui res-otuces shared with it.

II the context of tile dining philosophers problemn, resources will be referred
to as forks; in the context of the drinking philksophcrs problem, resources will be
referred to as boflcj.

2.1 Dining Philosophers

Fix an n-user fork requirement F = {(F : 1 < i < n). The following definitions
are all made relative to this fork requirencnt.

For each i, let the set {T, Ci, E. Ri) be denoted F- TCER. (The letter F
stands for "fork.") T is the action by which tser i enters its trying region, desiring
the resources Fi, and analegously for the other actions and regions. Since each user
i must request the same set F of forks ealh time, we do not explicitly include the
set of forks in the action names. Let F- TCER = UI, F- TCERi.

In order to specify the external schedule module for the dining philosophers.
problem, we define the following predicates on any sequence a. (Throughout this
paper, Greek letters stand for sequences from a set, and Roz:in letters for single
elements.) If a is a sequence from a set S and T is a subset of S, then &IT is defined
to be the subsequence of a consisting of elements in T.

* a is dining. well-forcd if for all i, the sutbsequence of a restricted to F-TCERi
conforms to the pattern TCE~i/ ....

* ot satisfies (REL.F) if for all i, if (iIF-TCER; is finite, then aIF-TCER does
not end in Ci. (REL-F) states that every user eventually releases the resources
it is granted, by leaving its critical region.

* a satisfies (EX-F) if for all i and j, i 5 j, if a = iCi/ 2Cjf3 3 and if Fjn Fi #0,
then P2 contains Ei. (EX-F) states that each user has exclusive access to a
needed resource when it is in its critical region.



"or satisfies (ND-F) if for all i, if (%IF-TCER is filitc, then CIF- TCERi ends
in Ri or is empty. (ND-F) states that tIh, systeml is not deadlocked, i.e., that
users stop taking stce only if they are all in their remainder regions.

" tr satisfies (NL.F) if for all i, if njF-TCER, is finite, then criF-TC.fRi ends in
Ri or is empty. (NL-F) states that. tit, system iais no-lockout, i.e., that any
individual user stops taking steps only if it is in its remainder region.

The dining philosophcrs problem for F is the external schedule module DiPh
such that:

* in(DiPh) = {T,,Ei : 1 5 < :,5
* oUI(DiPh) = CiRi: 1 :_ i _ n),
* DiPh preserves dining-well-formedntess (se, Appendix A for the definition of

"preserves"), and
0 Scheds(DiPh) is the set of all sequence-s (v of actions satisfying the following

implication"
Exclusion: If cr is dining-well-formed. thein a satisfies (X-F).

The exclusion implication tnt s that if the schedule is diing-well-formed, then
no two users are in their critical regions :it the sme time with the saone resource.

The no-dedlock dining philo.ophcr.s problem for F is the external schedule
module that is the same as the dining philosophers problem excep' that in addition
to the exclusion implication, schedules must satisfy the following implication:

No-deadlock: If ct is dining-well-formed and it satisfies (REL-F), then ac satisfies
(ND-F).

The no-deadlock implication states that if tihe schedtilt- is dining-well-formd and no
user keeps resources forever (by staying in its critical region forever), then eventually
some user will enter its critical region.

The no-lockout dining philoaophers problem for F is the external schedule mod-
ule that is the same as the dining philosophers problem except that in addition to
the exclusion implication, schedules nmst. sat isf the following implication:

No-lockout: If a is dining-wll-formed and nL satisfies (REL-F), then a satisfies
(NL-F).

The no-lockout implication states that if the sclwdule is dinilng-well-formed and no
user keeps resources forever (by staying in its critical region forever), then eventually
every user that wishes will enter its critical region.

6



2.2 Drinking Philosophers

Fix an ,-user bottle requirement V = (DI : 1< i ). The following
definitions arc made relative to this bottle re(qirement; itiost are analogous to
those in Section 3.1. Two new conditions, (NS]3}, and (NOV-B)i, both indexed by
user id i, are used to create implications to distinguish the drinking l)hilo sophers
problen fron the dining philoso)hers rolhnt, ts will l)e discussed.

For each i, let the set { T (D),Ci(D).EA(B),R(D) : B 5_ Bi and B # 0) be
denoted B.TCERi. (The letter B stauds for -bottles.") Let B- TOER = U7 ". B-
TCERi. The following predicates itre dcfined for any sc(lucnce (V.

* a is drinking. well-formed if for all i, the stibsequence of n- restricted to D. TERi
conforms to the pattern Ti(B)C (B)E,(D)Ri(B)T(B')C,(D')Ei(B')Ri(B')....

* a satisfies (REL-B) if for all i, if oIB-TCERi is finite, then cBID.TCERi does
not end in Ci(l) for any B. (REL-B) sites that every user eventually releises
all resources that, it is granted, by l'aving its critical region.

0 or satisfies (EX.D) if for all i and j. i# j, if v = l3C1 (B)I 2Cj(B')i 3 and
if B (t B' # 0, then 12 contains Ej(B). (EX-B) states that every user has
exclusive access to iRecdd resources when it is in its critical region.

* o satisfies (ND-B) if for all i, if aID-TCER is finite, then alB-TCERi ends in
Rj(B) for some B or is empty. (ND-B) states that the system is not deadlocked,
i.e., that users stop taking steps only if all users are in their remainder regions.

* a satisfies (NL.B) if for all i, if aIB-TCERi is finite, then aIF-TCERi ends in
R,(B) for sonic B or is empty. (NL-B) states that the systcm has no-lockout,
i.e., that any particular user stops taking steps only if it is in its remainder
region.

The drinkingf philosopher p)roblem for 8 is the external schedule module DrPh
such that:

* iL(DrPh) = {T 1(B),E (B): _ i <_ i,B _ B, and B # 0),
* oui(DrPh) = (Ci(B),Rj(B):1 < i < i.B C Bi and Bi #0),
* DrPh preserves drinking-well-forined(ie.s, and
* scheds(DrPh) is the set of all sequeces a of actions satisfying the following

implication:
Exclusion: If a is drinking-well-formed. then a satisfies (EX-B).

7



The no-deadlock arinkiny philo.wphcrs problem for 8 is the external schedule
module that is the sonic as the drinking philosophers problem except that in addition
to the exclusion implication, schedules imist satisfy the following implication:

No-deadlock: If a is drinking-well-formed and cr satisfies (REL-B), then cr satisfies
(ND-B).

The no.lockout drinking philosophers problem for 5 is the external schedule
module that is the same as the drinking philksoplhers problem except that in addition
to the exclusion implication, schedules nmst tisfy the following implication:

No-lockout: If o is drinking-well-formed and o" satisfies (REL-13), then Cr satisfies

(NL-B).

The next two predicates are intrchced to create mi implication that will dis-
tinguish between the drinking and dining lhilosophers problems.

# (NOV-B)i (1 < i < it) For all j and any R mid B' with B n B' 0 0:

(1) if & = PiTi(B)fTj(B')#is, then /#j contains Ci(B); and (2) if or =
8Tj(B') 2 T(B)# 3 , then .2 contains Ej(B'). (NOV-B)i (NOV for "no over-
lap") states that whenever user i melests t resource, (1) no other user requests

that resource until after user i enters its critical region, and (2) any other user
that has previously requested that resource has already released it.

* (NS-B)i (1 < i < n) If tID-TCERi is finite, then *jB-TCERi does not end in
Ti(B) or Ej(B) for any B. (NS-B), (NS for "not stuck") states that user i is

never stuck in its trying or exit regions.

The next problem statement r'equirc it. degree of concurrency in the drink-
ing philosophers problen, concerning utsers being simultaneously in their critical
regions, that cannot be obtained with a dining philosophers algorithm.

The more.concurreint drinking philosoplhew. problem for S is the external sched-
ule module that is the same as the driunkintg philosophen. problem except that in
addition to the exclusion implication. selwdiles must satisfy the following it imlpli-
cations:

More concurrent for i, 1 < i < it: If (r is drinking-well-formed and satisfies (NOV-

B)j, then a satisfies (NS-B),.

For each i, the implication "more concurrent for i" states that as long as the
no-overlap condition is true for i, i will eventually enter its critical region, even if

S



some uscr j, with Bi nl Bj 1 0, stayi, in it criiicpl region forevcr (of course, j must
have only retources not needed by i). Thu.s. simply using a dining philosophers
kilgorithim for B would not satisfy this implication, since u.wr i would be stuck il
its trying region forever.

The no-lockout and more-concurrent drinking philosophers problems are in-
comparable in the sense that there is an adgorithn 1"or tile first that does not solve
the second and vice-versa.

3. Drinking Philosophers Automaton

In this section we describe an automiton DrinA(S) to solve the drinking pailoso-
phers problem for the n-user bottle requirement 8 = {Di : 1 :_ i :_ n), in a
messnage-passing distributed system. P. is created by compsing several automata,
to be described, and then hiding most of tltt actions, in order for the external actions
to be consistent with the definition of t he problem. The component automata are
D(i), for 1 _5 i _< n, and any automaton Din:(B) that solves the dining philosophers
problem for B. D(i) represents the part of the drinking phi!osophers algorithm for
user i; Dine(B) is the subroutine. First we describe the algorithm informally, then
we present the D(i) automata, and then we define DrinA(B).

When drinker i enters its trying region needing a certain set of resources, it
sends requests for those that it needs but hacks. Recipient j of a request satisfies
the request unless j currently also wants the resource or is already using it. In the
latter two cases, j defers the request and satisfies it once j is finished using the
resource.

In order to prevent drinkers from deadlocking, a dining philosophers algorithm
is used as a subroutine. The "resources" manipulated by the dining subroutine
art. priorities for the "real" resources (there is ne dining resource fur each drinking
resource). As soon as drinker i is able to (to so in its drinking trying region (without
violating dining-well-formedness), it enters its dining trying region, that is, it tries
to gain priority for all its adjacent resources. If i ever enters its dining critical region
while still in its drinLuJg trying region, it sends demands for needed bottles that are
still missing. A recipient j of a demand must satisfy it even if j wanlts the resource,
unless j is using the resource. In the latter case, j defers the request and satisfies
it when j is through using the resource.

Once drinker i is in its dining (ritical region, we can show that it eventually
receives all its needed resources and never gives themi up. Then It may enter its



drinking critical region. When i enters its drinking critical region, it relinquishes
its dining critical region. The benefits of having the priorities are no longer needed.
Doing son allows some extro concurren:y: evein if i stays in iti drinkirng critical region

forever, other drinkers needing other resourc"s can continue to make progr.ms.

A couple ol points about the code deserve explanation. We can show that when
a request is received, the resource is always at the recipient; thus it is not necessary

for the recipient to check that it has the resource before satisfying or deferring the
request. However, it is possible for old leftover deniawds to be in the system, so

before satisfying or deferring a demand, the recipient must check that it has the

resource.

Another point concerns when the actions of the dining subroutine should be
performed. Drinker i's dining output actions are Tj and Ei and are enabled (using
Boolean flags) in such a way as to preserve dining-wel-fornied ne. Some drinkers
could 'be locked out if drinker i never rvlitiquishes the dining critical region. To
avoid this situation, i cannot enter its drinking critical or remainder regions as long

as Ei is enabled. Th, :-airness assumption about the underlying model ensures that
once Ei is enabled eventually i enters its dining exit region, after which it may enter

the appropriate drinking, region.

We now present the automaton D(i).

The set of possible messageo is (rcq(b), at(b),dem(b) : b E S).

The state of D(i), 1 < i < n, consists of values for the following variables:
drink .region(i), dine.region(i), deferred(i), boat .e(i), req.bottle5(i), bufii, j) for all

j # i, do.T(i), and do-E(i). The region(i) variables take on the values T. C, E and
R, and indicate which region the i h dining and P*h drinking philosophers are in. The
deferred(i) variable is a set of pairs (b,j). indicating that user j's request for bottle

b has been deferred at user i. The bottlel(i) and req.bofiles(i) variables are sets of
bottles, and indicate which bottles user i has mid which it requires, respectively.
For each j i, the variable buffi,j) is a FIFO queue of messages from D(i)

to send to D(j), and is manipulated with operations enqueue and dequeue. The
do-T(t) and do-E(i) variables are Booleans and control when the output actions
Ti and Ei respectively are enabled. Ini the unique start state, the region(i)'s are
R; deferred(i), req.botilei(i), and all the huffij) tre empty; do-T(i) and do-E(i)

are false; and bottlcs(i) is an arbitrary subset of Di. (We have actually defined a

class of automata D(i), with different start, states, depending on the initial value of

boltles(i). Later, we will require consistency between the D(i)'s.)

10



The actions of D(i) are listed bdlow, together with their preconditions and
effects. (There are no internal actions.) First we define two macros, SAT and
DEFER. SAT satisfics a request or deunuid froin D(j) for bottle b by sending the
message sat(b) to D(j) and removing b from bottlcI(i) mid (b,j) from defcrrcd(i).
DEFER defers a request or demand from D(j) for bottle b, if b is currently required
by D(i), by adding (b,j) to deferred(i); if h is not currently required, theil the
request or demand is satisfied.

SA T(i, b, j) == enqueue(buffi, j ),.s&t( b))
bottl.'(i) -- boitlej(i) - {b)
dcferred(i) +- deforred(i) - (t,,j))

DEFER(i, b,j) == if b E req.bolttlc(i) then deferred(i) .- defcrred(i) U {(b,j))
else SAT(i,b,j)

Input actions:

* T(B), B _B
Effect:

drink.region(i) - T
req.bottles(i) +- B

for all j 1 i and b E rcq.bowlc(i) n Bj:
if b V bottle.(i) then enquoue(buffi,j),req(b))

if dine.region(i) = R then do.T(i) +- true

* E(B), B C B
Effect:

drink.region(i) +- E

for all (b,j) E deferred(i): SAT(i.b,j)

* dclivey(sat(b), j, i) for all j i i, b E Bi n D i
Effects:

bottles(i) 4- bottles(i) U {b)

* deliver(req(b),j, i) for all 3 # i, b E Bi nl Bi
Effects:

if drink.region(i) = T or drink.region(;) - C
then DEFER(i, b, j)
else SAT(i, b, j)

* deliver(dern(b), j, i) for all 9 6 i, b E Bi f Bi

11



Effect.
it b5E botttesi) thm

if dlrik.?eglc.n(i) = C or (drink-rtyiou(i) = T & iingrgio(i) C)
then DST!'ER(ij ,j)
else SAT(i, b,)

. Ci

dine-region(i) +- C
if drink..region(i) =T then~

for 4i j 0 i andi b E rct-botIet,(i) ('Di: if b battes~i) then
enqueuebumi~j),dona(b)))

else do-E(i) ~-true

Effect:
dine-region(i) R-f
if drink-region~i) = T theu do.T(i) 4-true

Output actions:

" C.(B), B 9Bi
Precondition:

drink-region(i) = T
B =req-botlejs(i) C- botleq(i)
do-E(i) = false

Effect:
drink-rcgion(i) +- C
if dine-region(i) = C then do.E(i) trite

" Ri(B), B C-B
Precondition:

drink-region(i) =E
B = Teq-bottles(i)

do-E(i) = false
Effect:

drink-region(i) +- Rt

" delivei'r, i,j) for all j 54i m E {req(b)), d(b), dem(b) b bE .Bi n Bj)
Precondition:

12



in is at, head of b t.fi,j)
Effect:

dequeue(buff i, j))

Precondition:
do-Ti) = true

Effect:
dine.rcgion(i) * T
do.T(i) " false

Precondition:
do.E(i) = true

Effect:
dine-regien(i) .- B
do.E(i) ,- false

The output actions of D(i) are partitioned into n classes, one for the deliv-
ery of messages in each bu.f(i, j), and one for all the other actions. Formally, the
subsets of the output actions are (Ci(B), R,(B), T., Ej : B g Bi), and for each
j - i, {deliver(in,i,j) : in = rcq(b), dem(b), or x'ot(b), b E Bi n Bj). This partition
guarantees that messages are eventually delivered in fair executions, since the mes-
sage queues are FIFO. In essence, the buff variables are modeling separate piect of
hardware, the communication links.

A set of automata (D(i) : 1 _ i _ n is rejource.compatible if for all i, and all
b in Bi: b is in bofttke(j) in the start state of D(j) for exactly one j. Let Dine(B)
be an automaton whose input actions are {Ti, Ei : 1 < i < n) and whose output
actions are {Ci, Ri : 1 _ i < n. The automaton Drink(B) is formed by composing
a resource-ccmpatible set (D(i) : 1 < i 5 it), and Dinc(8), and then hiding all
actions except U =- B-TCBRi. See Figure 1.

4. Proof of Correctness

In Section 4.1, we show that DrinkL b) solves the drinking philosophers problem,
that is, the safety properties are true, regardless of the behavior of the Dine(B)
subroutine. Section 4.2 consists of the proof that DrinL{B) solves the no-deadlock
(resp., no-lockout) drinl:ing philosophers problem if the Dine(S) subroutine solves
the no-deadlock (resp., no-lockout) dining philosophers problem. In Section 4.3
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Dine(B)

TI CI T2 C2

E I R I E2 R2
V Deliver(m, 1,2)

T1(5)... CI(B)... v ,2,1T2(B)... C2(B)...

EI(B)... I (B)... E2(B)... R2(B)...

Figure 1: Drink(S), a system of two drinking philosophers.

we show that Dine(S) solves the more-concurrent drinking philosophers problem if
the Dine(B) subroutine preserves dining-well-formedness. The proofs rely heavily
on invariants about the states of the automata. The proofs of the invariants are
relegated to Appendix B.

4.1 Drinking Philosophers

We show that Drink(B) solves the drinking philosophers problem, regardless of
the behavior of Dine(S). That is, we show that correct exclusion is maintained by
the algorithm, although no liveness properties are guaranteed. Three lemmas are
used in the proof of the main result, Theorem 4. Lemma 1 states some simple r--
lationships between states and actions in an execution, for example, drink.-rgion(i)
and dine.region(i) reflect the most recent drinking and dining actions at node i.
Lemma 2 asserts that Drink(B) preserves drinking-well-formedness. Lemma 3 con-
sists of several invariants needed to show the exclusion property.

Let bufi,j)lb be the subsequence of buffi,j) consisting exactly of sat(b),
req(b) and dem(b).

Lemma 1: Let e = soa l s, ... be an execution of Drink(B). Choose any i and m.
with 1 < i < n and sm in e.

(a) Let k be the largest integer such that k <_ i and ak is in B. TCERi. (Let
k = 0 if there is no such ak.) If k = 0 or ak = Ri(B), then drink.region(i) = R
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in j,.. If ak = T,(D), then drink.region(i) T in ,a. Ifa= Ci(B), then drink.
reion(i) = C in s,.. If ak = Ei(B), then drink.rcgion(i) = E in .,,.

(b) Let k be the largest integer such that k < i and ak = T(B) for any B. (Let
k = 0 if there is no such ak.) If k = 0, the rcq.&otles(i) - 0 in s.t; othezisc
rcq.bottlcs(i) = B in s,.

(c) Let k be the largest integer such t. at k :5 m mad ak is in F-TCERi. (Let k = 0
if there is no such aO.) It k = 0 or ti,, = RT, then dine.rogion(i) = R in S.. If
ak = T, then dine.region(i) = T in . ,, If ot = C, then dinc.rcgion(i) = C in .s.,..

If at. :. , then dine-region(i) = E in s..

(d) For all j 0 i, buiy.i,j) lb is empty uk.is b is ii Bin Bj, in s,.

(e) If (b,j) is in deferred(i), the: j 1 i and b is in Bi n B1 , for all b and j, in sin

Proof: By an easy induction ol ni, inspecting the code. 0

Lemma 2: Drink(B) preserves drinking-wel-.ormedne.

Proof: Suppose o is a schedule of Drink8b),t and #a is a prefix of a such that P
is drinking-well-formed ad a is a locally-con trolled action of DrinLgB). We show
that #a is drinking-well-formed.

Let e be any execution of DrinkB) with schedule #a; let s be the state of e
between P and a. There are two cases.

Cast 1: a = Ci(B) for some i and B. We must show that Pll-TCERi ends in
b = T(B). By precondition of Ci(B), drinak-region(i) = T and B = req-bottlt e(i) in
s. By Lemma 1(a), b = Ti(B') for some B', and by Lemma 1(b), B' = B.

Casc 2: a = R,(B) for some i and B. A\e must show that Pl-TCERt ends in
b = Ej(B). By precondition of Rj(B), drink .regio(i) = E and B =. req.bottles(i)

in s. By Lemma 1(a), b = Ei(B') for some B'. Since P is drinking-well-formed,

PB-TCERj ends in T(B')Cj(B')Ej(B'). By Lemma 1(b), B' = B. 0

The following lemma states some invariants of the algorithm, that is, predicates
true in every reachable state of DrinLk(B). Rec..Al that each bottle is in at most tvo

Bi's.

Lemma 3: Let e be an execution of Drik-(1B) whose schedule is drinking-well-
formed. Then in every state of e, the following are true, for all i, j and b.
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(A) If b is in B;fn Bj, i 1 j. then exactly me of the following is true: b is in bottle(i),
or b is in bottle(j), or sat(b) is in b*f(ij). or sot(b) is in buj(j,i). If b is in Bi
ony, then b is in bornes(i).

(B) If (b,j) is in deferred(i), then
(a) b is in bottlcs(i),
(b) drink-region(j) = T. and
(c) b is in rcq-bottle(j).

(C) If req(b) is at the head of bufflii,j)lb, then b is in bottle.,(j).

(D) If rcq(b) is in bu.fi,j), then
('a) at most one req(b) is in buffi,j).

(b) no Sat(b) follows it in bfiij),
(c) (b, i) is not in dcferrcdj),
(d) drink-rgion(i)= T,
(e) b is in rcq.'bottles(i), and

(f) b is not in botflcs(i).

(E) f It(b) is in buffi,j). then

(a) at most one sat(b) is in buffi, j),
(1)) no dem(b) immediately follows it in hbufi,j)b,

(c) drink-region(j) = T, and
(d) b is in rcq.bottie(j).

(F) If dcn(b) is at the head of buffii,j)Jb and b is in bottleo(j), then (b,i) is in
dfcrrecd(j).

(G) If drink-region(i) = T and b is in rel-bottles(i) and b is in Bj, j # i, then exactly

one of the following is true: rcq(b) is in buffitj), or (b,i) is in deferred(j), or sat(b)
is in buffj, i), or b is in bottlc.(i).

(H) If b is in rcq4otie.q(i) and drink.region4i) = C, then b is in bottles(i).

Proof: In Appendix B. 0

Here is the main theorem.

Theorem 4: Drink(B) solves the drinking philosophers ))roblem2 for B.

Proof: Drink(B) has the correct input and output actions by inspection and pre-

serves drinking-well-formedness by Lemma 2.
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Let e be a fair execution of Drin.(L ) with schedule t. We verify the cxcl.ition
implication.

Suppose cc is drinking-weli-formcd. We imust show o satisfies (EX-B). Suppose
in contradiction that cc = cc, Cj(B)o2Cj(D'|o for some i and j, with B n B' #A 0,
yet a2 contains no Ei(B). By drinking-well-formnednCss, i 4 j. Let s be the first

state Of 03.

Since a is drinking-wel:-formed, aI ID-TCER, ends in T(B), and a2jB-TCER,
is empty. By Lemma I(a) and (b), drink.rcion(i) = C, and B = req.bottet(i) in S.
Thu- by Lemina 3 (H), B C botlcs(i) in s.

Again by drinking-well-formedneo, ajCj(D)c2 B-TCER ends in Tj(D'). By
Lemma I(a) and (b), drink.region(j) = C, ond B' = rcq.&botles(j) in .s. Thus by
Lemma 3 (H), B' C bottuei(j) in s.

But since B n B' V 0, there is wime b in B n B', and thus in Bi n Bj, such
that b is in bottles(i) and b is in bottlet(j) in .a, contradicting Lemma 3 (A). Thus Ce
satisfies (EX-B).

We conclude that Drink(B) wlves the drinking philosophers problem. 0

4.2 No Deadlock and No Lockout

In this subsection we show that Drink(B) solves the no-deadlock (resp., no-
lockout) drinking philosophers problem if Dine(b) solves the no-deadlock (resp.,
no-lockout) dining philosophers problem.

Lemma 5 consists of some invariants that are useful in doing the liveness proofs.
Lemma 6 is a technical lemma relating to dining-well-formedness. Lemma 7 states
that Dine(B) behaves properly in the composition, which means that the appro-
priate implications are true (e.g., exclusion and ino-deadlock for dining, if Dinc(B)
solves the no-deadlock dining philosophers problem). Lemma 8 states that if all
bottles are eventually released, then all forks are eventually released. The heart
of Lemma S is showing that once a process in its drinking trying region enters its
dining critical region, it subsequently enters its drinking critical region and releases
its forks. Showing this depends on the dining exclusion implication (Lemma 7).

Lemma 9 is the key lemma and states that the no-deadlock implication for
dining philosophers implies the no-deadlock implication for drinking philosophers
(if all bottles are eventually released), and similarly for no-lockout. Lemma 9 is
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proved as follows. Since all bottles are relcoscl., Lemma 8 implies that all forks
are released. Then Lemma 7 implies that (ND-F) (or NL-F as appropriate) is true,
which in turn implies that eventually the dining critical region is entered and tht
drinking critical region is entered. Theorems 10 and 11 put the pieces together.

Lemma 5: Let c be an execution of Drink(8) whose schedule is drinking.-well-
formed. Then in every state ofe, the following are true, for all i.

(A) If do. T(i) is true, then dine.region(i) = R?.

(B) If do.E(i) is true, then dine.region(i) =.

Proof: In Appendix B. 0

Lemma 6: Let e be an execution of Drin(IS) whose schedile a is drinking-well.

formed. If Dine(B) preserves diting.wcll-formedcless, ten

(a) cc is dining-well-formed, and

(b) for any i, if xjB-TCER. is finite, then aIF-TCEIh is finite.

Proof: (a) We show a is dining-well-formed by induction on the length of its

prefixes. The empty prefix is obviously dining-well-formed. Let #a be a prefix of a
such that f is dining-well-fonned. Let e be any execution of Drink(B) with schedule

fla; let s be the state of e between # ald a.

Case 1: a = Ti for some i. By precondition of T, do-T(i) is true in s. By
Lemma 5 (A), dine.region(i) = R in s. By Lemma 1(c), 13!F-TCERi either ends in
Ri or is empty.

Case 2: a = Ci for sonic i. Since Dinc(L) preserves dining-well-formedness,
fIJF-TCERj ends in T-.

'asC 3: a = Ej for some i. By precondition of Ei, do-E(i) is true in s. By

Lemma 5 (B), dine.region(i) = C in s. By Lemma 1(c), [3JF-TCERi ends in Ci.

Case 4: a = Ri for some i. Since Dine(B) preserves dining-well-formedness,

fOIF-TCERi ends in Ei.

(b) Assume in contradiction that for some i, aIB-TCERi is finite but aF-
TCER, is infinite.
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Case 1: ojD-TCERi ends with T,(D) for some D. By Lcnnut 1, drink.
region(i) = T for the remainder of c. By dning-weil-fornncdness, some Ci action
occurs in c after the final T(B). By dining-wcll-forincdeicss and Lemmas I and 5
(B), do-(i) is false when this (4 occurs. By the code, do.Qi) never becomes true
after this point, since drink.region(i) = T when the C" occurs and no C((D) ac-
tion occurs subsequently. Thus there is no s.Absequent Ej action in e, contradicting
dining-well-formcdness.

Case 2: cr!D-TOER ends with (-.'(), Eq(D) or Rq(D) for some 1. By
Lemma 1 drink.rkqion(i) is never equal to 1' iii the remainder of e. By dining-
well-forinedness, some Ri action occurs in r ofter the final action in D-TCBER. By
dining-well-fornedness und Lemnans 1 uid 0 (A), do.T(i) is false when this Ri oc-
curs. By the code, do.T(i) never becomes true after this point, since drink.regTion(i)
is not T when the Ri o'-:ur. and no T(D) action occurs subsequently. Thu.s there
is no subsequent Ti action in c, contradicting dining-well-formedness. 0

Lemma 7 shows that Dine(S) behaves properly in the composition.

Lemma 7: Let t be a fair execution of Drink(S) whose schedule a is drinking-weI-

formed.

(a) Suppose Dinc(B) solves the din ing philosophcrs. problem. Then a satisfies (BX-
F).

(b) Suppose Dine(B) solves the no-deadlock dining philosophers problem. If cc

satisfies (REL-F), then ct satisfies (EX-F) and (IND-F).

(c) Suppose Dine(B) solves the no-lockout dining philoo)hers problem. If o satisfies
(REL-F), then or satisfies (EX-F) and (NL-F).

Proof: In all three cases, Lenma 6(a) implies that ve is dining-well-formed. Let
el = cjDine(B) and o' = sched(c'). Thus (' is also dining-well-foried, and if a
satisfies (REL-F), then so does a'. By it result in [LT], c' is a fair execution of
Dine(B). Thus a' satisfies (EX-F) and either (ND-P) or (NL-F) (as appropriate),
and so does a. 0

Next we show that if all bottles are eventually released, then all forks are
eventually released.

Lemma 8: Let e be a fair execution of Drik(B) whose schedule a is drinking-well-
formed and satisfies (REL-B). If Dine(B) solves the dining philosophers problem
for B, then a satisfies (REL-F).
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Proof: We must show that for ll i, ajIF-TCERi doc-s not end in C,. Lemnma 6(a)
implies that a is dining-v.ell-fornied. By Lemma 7(a), a satisfies (EX-F). Suppose

in contradiction that for some i, c - c1 C 2r. where no action from F- TCERi occurs

in C2. By Lemma 1(c), dine.region(i) = C throughout c2 . Let i be the last state nf
Cl.

Case 1: drink.region(i) = C, E or R in i. By the code, do.E(i) = true

throughout c2. Thus C,(B) md )?(D) are disabled for all B throughout C2 and

hence never occur in C2. By a.sumption, T, and Ej never occur in e2. Yet EB is

enabled throughout £2, contradicting c being fair.

Case 2: drink.region(i) = T in s. Let reipl-ohics(i) = B in i. If do.Ei) ever

becomes true in £2, then the same argunieut as in Case 1 gives a contradiction.

Thus do.E(i) never becomsc true in ct. By the code, then, Ci(B') never occurs in

C2 for any B', and by Lemma 1(a) and (b) md drinking-well-formedness, no Ei(D')

occurs, drink.region(i) = T, and rcq.bot1lc.-(i) = B throughout C2.

At the beginning of £2, D(i) sends dcn.(b) for all b in B that it is still missing.
We now show that eventually every missiIg bottle will be in bottle.(i). By fairness

of c, each dem(b) is eventually received. Consider recipient D(j).

Case 2.1: b 0 bottle(j) when dem(b) is received by D(j). Throughout e2,

D(i) never adds sat(b) to buffiij), since requests and demands are deferred and

no Ej(B') occurs. Since the queues are FIFO, Lemma 3 (A) implies that the only

possibilities when dem(b) is received are that-b is in botfles(i) or ,at(b) is in buffj, i).

Cast 2.2: b E botiles(j) when dcun(b) is received by D(j). By the code, there
are only two situations in which sat(b) is not immediately added to buf(j, i).

Cast 2.2.1: drink.rcqion(j) = C mud h E rcq.botles(j) when dem(b) is received
by D(j). By (REL-B), eventually some E1 (B') occurs subsequently in C2 and thus

by the code sat(b) is added to bu.lj, i) thema.

Case 2.2.2: drink.region,(j) = T mand dinc.nrion(j) = C and b E rcq.boftles(j)
when dern(b) is received by D(j). Since a satisfies (EX-F). dine.region(j) can never

be C in C2 by dining-well-formedness and Lemnmola 1(c), and this case cannot occur.

In both Cases 2.1 and 2.2, by fairness of e, the sat(b) message eventually anives
at D(i) in £2.

Since C2 contains no Ci(D) action, by drinking-well-forniedness no Ri(B') or

Ci(B') occurs in C2 for any B'. Yet once any bottle in B is in bottles(i) in C2, it
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stays there for the rest of c2. Thus after somc point in C2, Cj(B) is continuously
enabled, yet no action in that ch ss of the, partition occurs, contradicting c being
fair. 0

The next lemma states that nio-deadlock for forks implies no-deadlock for bot.
tles, and similarly for no-lockout.

Lelmma 9: Let be a fair execution of Drink(8 ) whose sdedule & is drinkiuig-well.
formed and satisfies (REL-B). If Dinc($) solves the no-deadlock (vsp., no-lockout)
dining philosophers problem, then ct sathfics (ND-B) (ivsp., (NL.B)).

Proof: By Lemma 6(a), a is dining-well-fornied. If Dine(B) solves either the no-
deadlock or the no-lockout dining philosophers problem, then Dine(B) obviously
solves the dining philosophers problem, and by Lemma 8, a satisfies (REL-P).

Suppose in contradiction that a (lots not satisfy (ND-B) (resp., (NL-B)), i.e.,
there exists an i such that aID.TCER (rcsp.. atll-TCERi) is finite and aIB-TCERi
ends in Ej(B) or T(B) for some D. (Ending in Ci(B) is ruled out by (REL-B).)

We now show that aF-TCERi ends in Rj.

No-deadlock: Since c, IB-TCER is finite, ttiF-TCER is also finite by Lemma
6(b). By Lemma 7(b), a satisfies (ND.F), implying that caIF-TCERi ends in Ri.

No.lockout: Since aB-TCERj is finite. oF-TCER, is also finite by Lemma
6(b). By Lemma 7(c), or satisfies (NL-F), implying that arIF-TCERi ends in Ri.

We now show that both possibilities for the final action in aiB-TCERi lead to
a contradiction.

Case 1: aIB-TCERi ends in Ti(B) for some B. By Lemma 1(a), drink-
region(i) = T for the rest of c. Since c.IF-TCER, ends in Ri, dine.region(i) = R
for the rest of c by Lemma 1. If the final Ri occurs before the final Ti(B), then
do.T(i) is set to true when the T(B) occurs. If the final Ri occurs after the final

Ti(B), then do-T(i) is set to true when the Ri occurs. In both cases, after some
point, do- T(i) is true for the rest of e. Thus after some point in e, Ti is continuously
enabled, yet no action from that class of the partition occurs, contradicting C being
fair.

Case 2: aiB-TCERi ends in Ei(B) for some B. After this point, drink-region(i)

remains E and req-bottle(i) remains B, by Leninia 1. Since a-IF-TCERi ends in
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R,, after somi point in c Jinc-rcian(i) reumhiu, I? by Lemma 1. Thus I)y Lemmia 5
(B), do-(i) remains false. So afterx -iie ploint. in c, R(B) is continuously eimbled,
yet no action ill that clam of the Itrtition mcui.m, contradicting c being fair. 0

The main theorems follow.

Theorem 10: If Dinc(8) solves the io.dcadlock dining philooph,.s problem for
8, then Drink(B) solves the iso.dendlock drinkinig philosophers problem for S.

Proof: Drink(S) has the correct input utl outp)ut actions )y inspection and pre-
serves drinking-well-formhednes by Lemma 2.

Let e be a fair execution of "hriuLtS). We v'erif, the exclusion and no-deadlock
implications. The exclusion impliention is true by the same argument as in the
proof of Theorem 4. The no-dcndlock implication is true by Lemma 9. 0

Theorem 11: If Dine(B) solves the no-lockout dining philosophers problem for 5,
then Drink(S) solves the no-lockout drinking philosophers probler for B.

Proof: Analogous to the proof of Theorem 10. 0

4.3 Concurrent Drinking

In this subsection we show that Drinij 8) solves the more-concurrent drinking
philosophers problem, regardless of the behavior of Dine(8) (as long as it preserves
dining-wclI-formedness). In essence, the condition (NOV-B)i is so strong that the
dining subroutine is not needed to arbitrate disputes. Lemma 12 proves several
invariants about dr(b) messages and is used in the proof of the next lemma (as
well as in the complexity analysis). Lemma 13 is the main one, stating that the
no-overlap condition implies the never-stuck condition. Theorem 14 puts the pieces
together.

A dmr(b) message in bufi,j) is cur'rnt if one of the following is true: a
sat(b) message precedes it in bufii,j), or 1 is in battlc.(j), or a sat(b) message is in
buffj, i).

Lemma 12: Suppose Dine(B) preserves dining-well-fornedness. Let a be an execu-
tion of Drink( B) whose schedule is drinking-well-formed. The following predicates
are true in every state of e, for any i, j and b.

(A) If there is a current dcm(b) message in buB(ij), then
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(a) drink-rcgion(i) = T.
(b) dinc.region(i) = C,
(c) b is in randbot/i.4L)) ,d
(d) do.E(i) is false.

(B) There is at most one current dcrn(b) essoge in buflj).

(C) There is at most one non-current dcen(b) inessage in bullij).

Proof: In Appendix B. 0

Lemma 13: Let e be a fair execution of Drink(B) whose schedule * is drinking-
weil-formed and astisfies (NOV-B), for some fixe( i. If Dinc(b) preser ves ;i ing-

well-fonnedness, then o satisfies (NS.D).

Proof: Recall that (NOV-B), states that for all j and any B and B' with EnB' #. 0,
the following two conditions hold: (1) if cr = O3T(D)# 2T(B)fPj, then #2 contains

Ci(B); and (2) if * = iTj(B')2T(B), then 2 contains Ei(D').

Suppose in contradiction to (NS-B), that cijD-TCERi ends in ri(B) or E (B)

for some B.

Caje 1: &xB-TCER ends in T(D). By (NOV-B) 1 , drinking-well-formedness

and Lemma 1(a), for all j 4 i, drink.rcgion(j) = E or R for the rest of c after the

final Ti(B). When the final T,(D) occurs, a request mesage for each bottle b in D

that is not in botiles(i) is placed in the app)ropriate btfi,j). Since e is fair, it is
eventually delivered. By Lemma 3(c), b is in boftle.(j) when the request is received

and by the code D(j) immediately satisfies the request. Since 6 is fair, the satisfy

message is eventually delivered to D(i).

We now show that once b is in bottl0(i) after the final Ti(B), it remains there.

Since drink-region(j), j # i, is never equal to T after the final T(B), Lemma 3 (D-d)

implies that D(i) never reccives req(b) after the final T(B). Similarly, Lemma 11
(A-a) implies that D(i) never receives a dcm(b) message for b in bottle(i) after the

final Ti(B). Thus there is a point in c after which every bottle in B is in botiles(i)

and remains there.

By Lemma 6(b), cIF-TCERi is finite. Consider the point in e after the latter
of (1) the last action in F-2'CERi and (2) the point after the final Ti(B) when B _
bottles(i). If do.E(i) is true at this point, then Ei is continuously enabled for the

rest of e, yet no action in that class of the partition occurs, contradicting e being
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fair. If do.E(i) is false at this point, then C,(B) is continuously enabled for the rest
of e, yet no action in that class of the partition occurs, contradicting e being fair.

Cae 2: &IB-TCERi ends in Ei(D). By Lemma 6(b), IF-TCERi is finite.
After the latter of the final action in F-TCER, and the fin.l Ei(B), do-E(i) is
either true or false. If do.E(i) is true at this point, then Ei is continuously enabled
for the rest of c, yet no action in that. chtss of the partition occurs, contradicting
c being fair. If do.E(i) is false at this point, then Cj(B) is continuously enabled
for the rest of c, yet no action in that class of the partition occurs, contradicting c
being fair. 0

Theorem 14: If Dine(B) prvserves dliiug-wdl-foruecluss, then Drink(B) solves
the wore-concurrent drinking philosophers problein for B.

Proof: Drink(B) has the correct input aud output actions by inspection and pre-
serves drinking-well-formedness by Lemnmi 2.

Let c be P. fair execution of DrinLi~s) with schedule 0. We verify the exclusion,
and mor--concurrent for i (1 < i < n) implications. The exclusion implication is
true by the same argument as in the l)oof of Theorem 4. The more-concurrent for
i implications, 1 < i < n, are true-tby Leminut 13. (Lema 13 is applicable because
Letmna 6(a) implies that cv is dining-well-formed.) 0

5. Complexity Analysis

In this section, we analyze the worst-case waiting time of our algorithm as well
as evaluating it using the criteria listed in (CM). The analysis of the worst-case
waiting time shows that the limiting factor is the no-lockout (lining philosophers
subroutine. By replacing the 0(n) time subroutine of [CM) with an 0(1) time
subroutine (for instance, that of [Ly]), we obtain an 0(1) time drinking philosophers
algorithm.

WVe would like to bound how long a user must wait after requcting to enter
its critical region until it does so. The following definitions provide a measure of
time complexity for our model that is analogous to that in [PFJ, in which an upper
hound on process step time, but no lower bound, is assumed. (Thus, all interleavings
of system events are still possible.) Our timing definitions provide distinct upper
bounds on process step time and on-niessage delivery time.

Given an execution e of automaton A, where ( = so iaI s I a2.. ., It timing function
for e is an increasing finction t, mapping positive integers to nonnegative real
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lumbers such that for each real number t, only - finite number of integers i satisfy
to(i) < t. !ntuitively, t,(i) is the real tinc at which Ii Occurs; we rule out al infinite
number of actions occurring before a finite real time.

Let f be a function nimpping each class of the partition part(A) to a positive
real number. Execution e is f.bounded if the following condition is true for each
class C of the partition port(A). For each i > 0, either

(1) there exists j > i such that aj is in C and t(j) - t,(i) :_ f(C), or

(2) there exists j > i such that no action of C is enabled in ,sj and t,(j) - t,(i) :_
1(C).

That is, starting at any point in the execuition, within time f(C) either some output
action in C occurs, or else the auttomaton plssi_ through a state in which no output
action in C is enabled. Each class of the partition is considered separately, since
each class corresponds, in some sense, to a distinct entity in a larger system.

Now we analyze the worst-case time behavior of the no-lockout drinking
l)hilosophers algozit.hm, automaton Drink(S3), which uses any no-lockout dining
philosophers subroutine Dine(/) for B. Let f map each class {Ci(B), Ri(B), Ti, Ei :
B C D) to some positive real c and each class (deliver(m,i,j) : im = 'cq(b),dcm(b)
or sat(b)) to some positive real d. Thus, c is the upper bound on process step time
and d is the upper bound on the message delay. Let £ be the set of all fair f-bounldcd
executions of Drink(B) whose schedules are drinking-well-formed and satisfy (REL-
B).

Let trY/,i.tk be the maximum time, over all i and all B g Bi, between any

Tj(B) action and the subsequent Ci(B) action, in any execution in .6. Let critDrit
be the maximum time, over all i and ail B C B, between any CG(B) action and the
subsequent E(B) action, in any execution in .

Let iryoi,,, be the niaxinlum time over all i between any T action and the
subsequent Ci action, in any execution in £. Let critDhm be the maximum time

over all i between any Ci action and the subsequent Ei action, in any execution

in £. Let CzitDinc be the maximum time over all i between any Ei action and the
subsequent Ri action, in any execution in 1.

We assume that criDrit,k and Clittifi are constants.

Theorem 16 gives an upper bound on trYbriak, the maximum time a user

process nmust wait after requesting to enter its critical region until it is allowed to
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do so. It is proved using Leimmi 15, which bounds the number of messages in any
bufij). The proof of Lemma 15 in turn uses Lemma 12.

First we show th""t. there is a hounded umnber of messages in any buff. Let r
be the maximum number of bottles shired by any two drinkers.

Lemma 15: Suppose Dinc(6) preserves dining-wc)I.forneclcss. Let c he any
execution of Drink(B) whose schedule is ehriuiking-welI-fonned. Then in any state
oft, there am at most 4r messages in bajfi,j) for ny i s)d j.

Proof: Choose any i and j, i 4 j. Let. ; be amy state in e. By Lemma 1(d),
bufi,j)b is empty unless b is in Bi 0 B;. There are at most r bottles in Di n Bj.
Choose any such b. By (D-a) of Lemma 3, there is at most one req(b) message
in buf(ij) in s. By (E-a) of Lemma 3, there is at most one sat(b) ressage in
buffi,j) in s. By (B) of Lemma 12, there is at most one current dorn(b) message
in buj(i,j) in .. By (C) of Lemma 12, there is at most one non-current den(b)
message in bu.i,j) in s. Thus there are at most four messages in bu. i,j)b. The

result follows. 0

The main theorem follows.

Theorem 16: trYDrink 5 3c + 8rd + czitou e + tryW/Dc + Crit Drik.

Proof: Choose c in 6 and fix i. Supposw Ti(D) occurs at time t, for some B. In
the worst case, dine.region(i) = C at time t. By time c later, Ei occurs, by time
tZitDi.e later, Ri occurs, by time c ltter, Ti occurs, and by time trYDjie later, T,
occurs.

When this Tj occurs, D(i) sends a dcni(b) message for all required md missing

bottles. By Lemma 15, the demand is received by time 4rd later. As in the proof
of Lemma 8 (Case 2.2.2), either the recipient immediately sends sat(b) to D(i) or

else the rccipient is in its drinking critical region mnd sends sat(b)-by time critDri,,k
later. By Lemma 15, the sat(b) is received by time 4rd later. By time c later, Ci(B)
occurs. 0

Since we assume that critDrink, CxitDi,, r. d and c are constants, the worst-
case waiting time of this solution depends on trYD,e, the worst-case waiting time of
the dining philosophers subroutine. For any dining philosophers algorithin, trYDin

depends on critDin. We now give an informal argimnent for an upper bound on
CritDine. Once Ci occurs, Ei will not occur until after D(i) has sent demands for

needed bottles, these demands have been satisfied, and D(i) has entered its drinking
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critical region. The upper bound then is 2c + Sid+ critDr,.. Thus crltDioa is also
a constant, under our assumptions.

The dining philosophers subroutihe iiled by Chandy and Misra (19S4) has
tryoi,,, of 0(n). By reltacing it with, for instance. the dining l)hilosophers nlgo.
rithin of Lynch (1951), which has worst-caie waiting time of 0(1), we obtain a nore
efficient drinking philosophers algorithm. The algorithin of Lynch (1981) has timte
0(1) in the sense that the worst-case waiting time is a function of local information,
including the maximum number of users for each resource, and the naximumn nui.
her of resources for each user, and is not necssarily a function of the total tnubcr

of users.

Our drinking philosophers algorithm could be modified to replace r with a
small constant, if the requtst, demand, and satisfy znessages took it set of bottles
its arguments instead of a single bottle.

Five criteria for evaluating resource allocation algorithms are given by Chandy
and Misra (1984) - fairness, symmetry, economy, concurrency and boundedness.
We discuss each in turn.

Fairneis corresponds to our definition of no-lockout. Our drinking philosophers
solution has the no-lockout property as long as the dining philosophers subroutine
has it.

Symmetry means that each process runs the identical program. This property
is true of our solution, as long as it is true of the subroutine.

Economy means that processes send and receive a finite number of messages
between subsequent entries to their critical regions, and a process that enters its
critical region a finite number of times does not send or receive an infinite number
of messages. Our solution has this property: Recall that when Ti(B) occurs, D(i)
sends rcq(b) messages. - all missing resource. It defers any rcq(b) messages it
receives when drink.region(i) = T, but yields to dem(b) messages. When dine.
region(i) becomes C, it sends dem(b) messages for any missing resources. Thus at
most four messages (req(b), sat(b), dem(h), sat(b)) are sent on behalf of any bottle
for any one trying attempt. Furthermore, oace a drinker stops wanting to enter its
critical region, it may receive a request for each of its bottles, but after satisfying
the requests, it never sends or receives any more messages.

Concurrcncy means that "the solution does not. deny the possibility of simul-
taneous drinking from different bottles by differcnt, l)hilosophers." This is certainly
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true of our algorithm, since it satiieAs the inorc-concurrcut condition. More precise

formulations of "concurrency" were given in our definitions (see Sections 3 and 6).

Bouniedn *s means that the numiber of essages in any buffi,j) variable is

bounded, and the size of each message is bounded. This is certainly true of our

solution, by Luemma 15.

6. Conclusions

We have given precise definitions of several versions of the dining philosophers

and drinking philosophers problems, each version satisfying different liveness and

concurrency conditions. We described a modular drinking philosophers algorithm

that used as a true subroutine any dining philosophers algorithm. We proved the

correctness of our algorithm, and anlyzed its time complexity. One advantage of

our modular approach is that an algorithm with improved worst-case time perfor-

mance can be obtained by using a time-efficient dining philosophers subroutine. We
close with a discussion of other versions of the drinking philosophers problem.

The version of the drinking philosophers problem specifying the most concur-
rency would require that if a drinker recquests a. set B of bottles, it should eventually

enter its critical region, as long as no othcr drinker uses any of the bottles in B
forever. (Some bottles in B could bx kept forever after this request .s satisfied.)

Unfortunately, neither the algorithm in this paper nor that of Chandy and Misra

(1984) satisfies this conditions. An interesting problen would be to devise one that

does.

The following situation shows that our algorithm does not solve the "most

concurrent" drinking philosophers problem. (Essentially the same scenario shows
that the algorithm of Chandy and Misra (1984) also does not.) Suppose there are

three drinkers. 1, 2 and 3; 1 and 2 share bottle a, 2 and 3 share bottle b. First,
1 gets bottle a, enters its drinking critical region, and stays there forever. Then 2

requests a and b, obtains b, and enters its dining critical region. Since 2 can never
obtain a, it stays in its dining critical region forever. Finally, 3 requests b. Drinker

2 does not relinquish b upon a mere request., and 3 can never demand b, because

it can never enter its dining critical region. Thus, even though 3's bottle request
includes no bottle that is ever in use, it can never enter its drinking critical region.

There is a version of the drinking philosophers problem specifying a, degree of

concurrency intermediate between strongest and more-concurrent, that the algo-
rithin of Chldy and Misra (1984) solves and ours does not. The informal descrip-

tion is that if a drinker requests a set B of bottles, it should eventually enter ite
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critical region, as long as no other drinker uses or Wan0. any of the bottles in B
forever.

The following scenario shows that our algorithm does not solve this problem.
Suppose there are five drinkers, 1 thiough 5. Drinkers 1 and 2 share bottle a, 2
and 3 share b, 3 and 4 share c, and 3 and 5 share d. First, 1 gets a, enters its
drinking critical region and stays there forever. Then 2 requcsts a and b, obtains b
and enters its dining critical region. As in the previous scenario, 2 remains in its
dining critical region forever. Next, 3 retluests c and d. It obtains c from 4. Then
4 requests c from 3, the request is deferred. 4 demands c from 3, and the request
is satisfied. Now 3 obtains d from 5. But 3 will never get c from 4, lcause it can
never denand it. Thus, although none of the bottles e.quired by 3 are ever wanted
forever by another drinker, 3 cainot enter its drinking critical region.

In contrast, the algorithmn of Chmudy and Misra (19S4) will allow 3 to enter
its drinking critical region. The forks in the dining lhilosophers algorithm provide
a priority for the use of the corresponding bottles by the drinkers. The priority
alternates between the two processes sharing the resource. Thus, once 3 obtains c it
will not relinquish it until it has gotten to use it. In general, priority is broken down

on a link-by-link basis, whereas in our (more modular) algorithm, the priority conies
only with entering the dining critical region. In other words, one can optimize to

gain extra concurrency at the expense of violating modularity.
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Appendix A

In this Appendix, we review the aspects of the model of Lynch and Tuttle
(1987) that are relevant to this paper.

An input.output automaton A is defined by the following four components. (1)
There is a (possibly infinite) set of state, with a subset of start stes. (2) There is
a set of actions, associated with the state transitions. The actions are divided into
three classes, input, output, and internal. Input actions are presumed to originate
in the automaton's environment; consequently the autonw.ton must be able to react

-to them no matter what state it ix in. Output and internal actions (or, locally.

controlled actions) are wider the local control of the autonmaton; internal actions
model events not observable by the enviromnent. The input and output actions are
the ezternal actions of A, denoted cxt(A). (3) The transition relation is a set of

(state, action, state) triples, such that for any state s' and input action w, there is
a transition (e',,r, *) for some state s. (4) There is an equivalence relation part(A)

partitioning the output and internal actions of A. The partition is meant to reflect
separate pieces of the system being modeled by the automaton. Action 7r is enabled
in state .s' if there is a transition (s', ; ,) for some state s.

An ezecution e of A is a finite or infinite sequence soxrss ... of alternating
states and actions such that s0 is a start state, (ajj,7ri,-si) is a transition of A for
all i, and if c is finite then e ends with a state. The schedtle of an execution e is
the subsequence of actions appearing in e.

We often want to specify a desired Ieliavior using a set of schedules. Thus
we define an ezternal schedulc modude S to consist of it set of input actions, a set
of output actions, and a set of schedules. Each schedule of S is a finite or infinite
sequence of the actions of S. Internal actions are excluded in order to focus on the
behavior visible to the outside world.

Let A be an automaton or schedule module and P be a predicate on sequences
of actions of A. A preserc. P if for every schedule #a of A such that P is true of
P and a is a locally-controlled action of A, then P is also true of Pa.
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Automata can be composed to form another automaton, presumably ,,oliug
a systcm made of smaller components. Attomata communicate by" synchroniziogon
shared actions; the only allowed situations are for the output from one autoialko
to be the input to others, and for twverol autoiunta to share nn input. EIoms,

automata to be composed nmust have no output. actions in common, and the internm
n:tions of each must be disjoint from all the actions of the others. A state of the
•"Inpo,:ite automaton is a tuple of states, one for each component. A start state
of 'lie cnmposition has a start state in each componcit of the state. Any outl-.."
za,'ioi, of a component becomes an output action of the composition, and similarly
for a:l iriterwui action. An input action of the composition is an action that is input
f r cvvy omi. went for which it is an action. In a transition of the composition
cn actio. 7, ,.h component of the state changes as it would in the componeniv
auomnwon if , ,(currtd; if -r is not an action of soime component automaton,
thei. the ccm:'Jpondmg st.'* ;omponent. does not change. The partition of the
composition it fihe union of the .,artitions of the component automata.

Given an automaton A and a subset, fl of its actions, we define the automaton
Jriden (A) to be the automaton A' differing from A only in that each action in II
becomes an internal action. Thls ,pvratk is useful for hiding actions that model
interprocess communication in a composite automaton, so that they are no longer
visible to the environment of the composition.

An execution of a system is fair if each component is given a chance to make
progress infinitely often. Of course, a proccess might not be able to take a step every
time it is given a chance. Formally stated-, execution c of automaton A is fair if for
each class C of parl(A), the following two conditions hold. (1) If a is finite, then no
action of C is enabled in the final state of c. (2) If c is infinite, then either actions

from C appear infinitely often in c, or states in which no action of C is enabled
appear infinitely often in e. Note that any finite excecution of A is a prefix of some
fair execution of A.

The following result from [LT] is very useful: If c is a fair execution of a compo-
sition of automata, and A is one of the components. then cjA is a fair execution of
.4. (If e - sonrs ... , we define eIA to be the sequence obtained from e by deleting
7r sj if T is not an action of A, md replacing the remaining s; with A's-component.)

A problem is (specified by) an external schedule module. Automaton A solves
the problem P if A and P have the same input. and output actions, and if {ajext(A) :
a is the schedule of a fair execution of A) is a subset of the set of schedules of P.
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In other words, the behavior of A visible to the outside world is consistent with the
behavior required in the problem specificntion.

Appendix B

This ,ppendix contains the proofs of Lemmas 3, 5 and 12, all of which state
that certain predicates are invarialts.

Lemma 3: Let c be an execution of Drik(8) whose schedule is drinking-well.
formed. Then in every state of e, the following ar tre, for all i, j and b.

(A) Jfb is in ,AnBj, i I j, then exactly (ne of the followingis true: b is in bottlei(i),
or b is in bottle.(j), or sat(b) is in bu, i,j), or sat(b) is in buKj,i). If b is in B
ontv, then b is in botties(i).

(B) If (b,j) is in dcferrcd(i), then
(a) b is in bottles(i),
(b) drink.region(j) = T, and
(c) b is in req.bottle,(j).

(C) If req(b) is at the head of buJffi,j)b, then b is in botle,(j).

(D) If rcq(b) is in buj(i,j), then
(a) at most one req(b) is in buffij),
(b) no sat(b) follows it in bffi,.j),
(c) (b, i) is not in def "ed(j),
(d) drink-regicn(i) = T,
(e) b is in req.bottles(i), and!
(f) b is not in boitles(i).

(E) If sat(b) is in buffli,j), then
(a) at most one sat(b) is in bffi,j),
(b) no dem(b) imznediately follows it in bufJi,j)b,
(c) drink-.regioU(j) = T, and
(d) b is in req.bottles(j).

(F) If dem(b) is at the head of buffli,j)lb and b is in botles(j), then (b,i) is in
deferred(j).

(G) If drink.region(i) = T and b is in req-loftlas(i) anl b is in Bj, j # i, then exactly
one of the following is true: req(b) is in buffij), or (b, i) is hi deferred(j), or sat(b)
is in h ffj,i), or b is in bottles(i).
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(H) If b i.t in rcq.bottlce(i) jd drink.region(i) = C, then b is i, botllce(i).

Proof: Let c = 10als ... a,,SM.... We procc.d by induction on in, which indexes
the states of e.

(A) through (H) are obviouly tre of ,o, .incc it is rt strt stntof a composition
of compatible automata. Assumling (A) throutgh (H) ore trite of m.l, we show they
are true of .m. WVe consider (-very possible vwthi. of f,,..

Casc 1: a. = T(D).

Claims about .m-,:
1. drink-region(i) = R, by drinking-well-fonntedness and Lemma 1(a).
2. (b, i) is not in defevred(j), for all b itad j, by Claim 1 and (B-b).
3. sat(b) is not in b qffj,i), for all b and j, by Claim 1 and (E-c).
4. req(b) is not in buj(ij), for all b and j, by Claim 1 and (D.d).
5. If sat(b) is not in bwB(i,j) and b is not in Wottc(i), then b is in bottkl(j), where
b is in Dj, j # i, for all b, by Claim 3 and (A).
6. If buffi,j) is empty and b is not in boil.,(i), then b is in bottle.(j), where b is
in Bi, j i i, for all b, by Claim 5.

Claim about m:
7. rcq(b) is in buffi,j) iff b is not in bo~tles(i) and b is in req-bottlei(i) and b is in
B n Bj, for all b and j, by Claim 4 and code.
8. If req(b) is at the head of buB(i,j) and b is not in bottles(i), then b is in boUle,(j),
for all b and j, by Claim 6 and code.
9. If req(b) is at the head of buffi,j), then b is in bottles(j), for all b and j, by
Claims 7 and 8.

(A) No relevant change.

(B) Only (B-c) is affected, for (b, i). By Claim 2 and code, no (b, i) is in

deferred(j) in s,,,, so the predicate is vacuously trite.

(C) Only changes affect req(b) in buffi,j); by Claim 9.

(D) Only changes affect req(b) in bufi, j). (a) and (b) by Claim 4 and code.
(c) by Claim 2 and code. (d) by code. (e) and (f) by Claim 7.

(E) Only (E-d) is affected, for sat(b) in bisff(j,i). None by Claim 3 and code,

so vacuously true.
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(F) No relevant changes.

(G) Only changes involve i. Su:ppos, h is in rcq.bottlei() in By Claims
2 and 3 and code, we only need to show that, rcq(b) is in buvfij) iff b is not in
botdc*(i), which is true by Claim 7.

(H) Only changes itvolve i. By code, drink.region(i) = T in .,,, so vacuously
true.

C-4C 2: a. = A(D).

Claims about s.-:
1. drink.region(i) = C, by drinking-well-formedness and Lemna 1(a).
2. (b, i) is not in defcrred(j), for all b and j, by Claim 1 and (B-b).
3. rcq(b) is not in bufi,j), for all b and j, by Claim I and (D-d).
4. sat(b) is not in bufj, i), for all b aid j, by Claim 1 and (E-c).
5. If (b, j) is in deferred(i), then b is in bottlei(i), for all b and j, by (B.a).
6. If (b,j) is in deferred(i), then j 0 i, by Lemma 1(e).
T. If (b,j) is in deferred(i), then b is not in botile(j), sat(b) is not in buB(i.j), and
.at(b) is not in bugj, i), for all b and j, by Claims 5 and 6 and (A).
S. If (b, j) is in dcfered(i), then rcq(b) is not in buifj, i), for all b and j, by Claim
(D.c).
9. If (b,j) is in deferred(i), then drinYi.rcgiov(j) = T and b is in req.bottle,(j), for
all b an:d j, by (B-b) and (B-c).
10. If (b,j) is in deferred(i), then rcq(b) is not in blLfflij, i), for all b and j, by Claim
9 and (G).

(A) Only affects b such that (b,j) is in deferrcd(i) in s,,,. By Claim 7 and
code.

(B) Only affects deferred(i) and deferrcd(j). By Claim 2 and code, no (b,i)
is in deferred(j), so vacuously true. By code, no (b,j) is in deferred(i) in s,,, so
vacuously true.

(C) Only affects bufj. i), where (b,j) is in deferred(i) in s,,-.. By Cldm 8
and code, no req(b) is in buffij, i) in s.,,, so vacuously true.

(D) Only affects buffi,j). By Claim 3 and code, no rcq(b) is in bu.fi,j) in
s,, so vacuously true.
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(E) Only affects buffij) such that (b,j) is in deferred(i) in 4m-I, md buj(j,i)
for all j. By Claim 4 and code, no 40 (b) is in buffj,i) in ,, so vacuously true.
Suppose sat(b) is added to buffi,j) in s,,,. Then (b,j) is in deferred(i) in s,. (a)
By Claim 7 and code. (b) By code. (c) and (d) By Claim 9 and code.

(F) Only affects i. Since (F) is true in ,-and by code b is renmoved from
bottlic(i) if and only if b is removed front defcrrcd(i) in s., still true.

(G) Only affects j, where (b,j) is in deferrcd(i) in B By Claim 10 and
code, rcq(b) is not in buaj, i) in t,,,. By Claim 7 and code, b is not in boiln(j) in
sn.. By code, (b,j) is not in deferred(i) and .m.t(b) is it% bfiji) il s..

(H) Only affects i. By code, drink.region(i) = E in ., so vacuously true.

Ca, S: a. = deliver(sat(b),j,i).

Clain' about m-1:

1. sat(b) is at the head of buffj, i), by precondition.

2. b is in Bi n Bj, by Claim 1 and Lemma, 1(d).
3. b is not in botoks(i), by Claims 1 and 2 and (A).

4. b is not in botttei(j), by Claims 1 and 2 and (A).
5. sat(b) is not in buj(i,j), by Claims 1 and 2 and (A).
6. At most one sat(b) is in buffj, i), by Claim 1 and (E-a).
7. No dem(b) immediately follows .;ed(b) in b afj, i), by Claim 1 and (E.b).
8. drink-.rcgion(i) = T, by Claim 1 and (E-c).
9. b is in req.bo~tle3(i), by Claim 1 and (E-d).

10. rcq(b) is not in buf(i,j), by Claims 1, 8 and 9 mid (G).
11. (b, i) is not in deferred(j), by Claims 1. 8 and 9 and (G).

12. b is not in bot~les(i), by Claims 1, 8 and 9 and (G).

(A) Only affects b. By Claims 4, 5 und 6 and code.

(B) No relevant change.

(C) Only affects buf#(j, i)b. By code, since b is added to boties(i).

(D) Only affects b. By Claim 10 and code, .o req(b) is in bufi,j), so vacuously

true.

(E) No relevant change.
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(F) Only afflects bui(j, i). By Claim 7 and code, dem(b) is not at head of
buj~j, i), so vacuously true.

(G) Only affects b and i. By Claims 6, 10 and 11 and code.

(H) No relevant change.

Cate 4: a- = dedisr(rcq(b)j, i).

laimls 4bout .sm-I:

1. rcq(b) is at the head of buj, i), by precondition.
2. b is in Bi n Bj, Iy Claim 1 and Lenmia I(d).
3. b is in bottles(i), by Claim 1 and (C).
4. b is not in botle,(j), by Claims 2 and 3 and (A).
5. sat(b) is not in bu.i,j), by Claims 2 and 3 and (A).
6. sat(b) is not in bufj,i), by Claims 2 and 3 and (A).
7. Exactly one rcq(b) is in bu.ij, i), by Claim 1 and (D-a).
8. drink.region(j) = T, by Claim I and (D-d).
9. b is in req.bottlei(j), by Claim I and (D.e).
10. req(b) is not in buffi,j), by Claim 3 and (D-f).

(A) Only affects b. By Claims 4, 5 and 0 and code.

(B) Only affects (b,j). (a) by code. (b) I)y Claim 8. (c) by Claim 9.

(C) Only affects bufj, i). By Claim 7 and code, no rcij(b) is in bufij, i), so
vacuously true.

(D) Only affects bufi.j) and bu~tj,t). By Claims 7 and 10 and code, no
req(b) is in either buff, so vacuously true.

(E) Only affects butffij) if s.at(b) is added. (a) by Claim 5 and code. (b) by
code. (c) by Claim 8 and code. (d) by Claim 9 and code.

(F) Only affects busfi,j)1b. By code, b is removed from botet(i) ifand only if
(b,j) is removed from deferred(i).

(G) Only affects b and j. By Claim 7 and code, no rcq(b) is in but(j,i) in Sm.

By Claim 4 and code, b is not in bolies(j) in s,,,. By Claim 5 and code, sat(b) is in
bufi,j) if tund only if (b,j) is not in deferred(i) in s,,,.
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(H) Only affects b and i. By Claim 3 and 'ode.

Case 5: am = deliuev(dcm(b),ji). If b is not in bottles(i) in s,-I, then no
relevant changes are made. Assume b is in bottles(i) in .,,-l.

Claims about s.-):

1. b is in bottles(i), by assumption.
2. dom(b) is at the head of buffj, i), by prtcondition.
3. b is in Bi nl Bj, by Claim 2 and L nna I(d).
4. b is not in bottles(j), by Claims I and 3 mid (A).
5. sat(b) is not in buff i,j), by Clims 1 and 3 and (A).

6. snt(b) is not in buffj, i), by Claims I and 3 md (A).
7. (b,j) is in defcred(i), by Claims 1 mnd 2 mnid (F).
8. drink.region(j) = T, by Claim 7 and (B-b).
9. b is in req.bottle4j), by Claim 7 and (B-c).
10. req(b) is not in buffij, i), by Claim 7 and (D-c).

11. req(b) is not in buvi,j), by Claim 1 and (D-f).

(A) Only affects b. By Claims 4, 5 and 6 and code.

(B) Only affects (b,j). By Claims 1, 8 and 9 and code.

(C) Only affects buff~j, i)lb. By Clain 10 and code, vacuously true.

(D) Only affects buff(j,i) and buff(i,j). By Claims 10 and 11, vacuously true.

(B) Suppose sat(b) is added to buff(ij). (Nothing else is affected.) (a) By

Claim 5 and code. (b) by code. (c) by Claim 8 mid code. (d) by Claim 9 and code.

(F) Only affects buffi,j)b. By code, if b remains in bottlea(i), then (b,j) is in

deferred(i) in n.

(G) Only affects j mid b. By Claim 10. no rcq(b) is in buff(j,i) in s,,,. By

Claim 4, b is not in botiles(j) in s,,. By code, (b,j) is in deferred(i) if and only if
sat(b) is not in buffi,j) in smn.

(H) By Claim 1 and code.
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cae 6: a. = Cj.

Claims about sm-l : If drink.regioig) # T in 4,.-1, then no relevant changes occur.
Suppose otherwise. Only b in req.bottl.,-(i) and not in botticq(i) is affected.
1. drink-region(i) = T, by assumption.
2. b is in req-bottles(i) n LHj, j 9 i, by assumption.
3. b is not in bottle,(i), by asumption.
4. req(b) is in buBi,j), or (b,i) is in dcferrcd(i), or sat(b) is in bujsj,i), by Claims
!, 2 and 3 and (G).

5. If nat(b) is in buff(i,j), then no .at(b) is in bu j, i) and b is not in bottles(j), by
(A).
6. If ,sat(b) is in buBf ,j), then (b,i) is not in deferred(j), by Claim 5 and (B-a).
7. If sat(b) is in bu.(i,j), then req(b) is in biu.Oi,j), by Claims 4, 5 and 6.
S. If sat(b) is in buffi,j), then req(b) follows it in bu, i,j), by Claim 7 and (D-b).
9. If bufij)jb is empty and b is in bottle(j), then no Inzt(b) is in bu.fj,i), by
Claim 2 and (A).
10. If bui,j)b is empty and b is in boftle.,(j), then (b,i) is in deferred(j), by
Claims 4 and 9.

(E-b) by Claim 8.

(F) by Claim 10.

Rest are not affected.

CaGse 7. a... = G(B). By Lemma 2, sched(c) is drinking-well-formed; thus
in sched(e)IB-TCERi, a... is immediately preceded by Ti(B). By Lemma 1(b),
req.botle-s(i) = B in s

Claims abouts,,- :
1. drink-region(i) = T. by precondition.
2. T i i rcL .oU eis), t l is h-, uUcs(i), Pr all U, by precondition.

3. If b is in req.bottles(i), then b is not in bottles(j), where b is in Bi, j i i, for all
b, by Claim 2 and (A).
4. If (b, i) is in deferred(j), -then i # j and b is in Bi l Bj, for all b and j, by Lemma
1(e).
5. (b, i) is not in deferred(j), for all b and j, )y Claims 3 and 4 and (B-a) and (B-c).
6. req(h) is not. in buffi. j), for all b and j, by Claim 2 and (D-e) -~nd (D-f).
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7. If b is in req.bo~tlej(i), then sat(b) is not ill buij, i), where b is in B;, j i i, for
all b, by Clain 2 and (A).
8. If b is not in req.botlles(i), then sat(b) is not in bufj, i), where b is in BI, j i i,
for all b, by (E-d).
9. baufi, i)lsat(b) is empty for all b not in Bj, by Lemma 1(d).

(B-b) vacuously true by Claim 5.

(D-d) vacuously true by Claim 6.

(E-c) vacuously true by Claims 7, S mid 9.

The rest are unaffected.

Case 8: a,. = Ri(B). The only change is that drink.region(i) becomes R in
st". By Lemma 2, sched(e) is drinking-well-formed; thus in sched(e)B-TCERj, am
is imindiately pr ceded by Eip). By Lemlmna 1(a), drink.region(i) = E in sm-.
Thus (B-b), (D-d) and (E-c) are still true in -

Case 9: a.. = Ri, Ti, or Ei. None of the changes affects any of the pr.di-
cates. 0

Lemma 5: Let e be an execution of DriuLk(B) whose schedule is drinkingwell-
formed. Then in every state of e, the following are true, for all i.

(A) If do.T(i) is true, then dine-region(i) = R.

(B) If do.E(i) is true, then dine.region(i) = C.

Proof: Let e = soals, .. , atsm .... We proccd by induction on in, which indexes
the statcs of c.

(A) and (B) are obviously true of so, since it is a start state. Assuming (A)
and (B) are true of s.-, we show they are true of s,.. We need only consider the
following values for am.

Case 1: a," = Ti(B).
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(A) If dine.region(i) = R in sin-., then by code. If dine.region(i) q R in a,,-I,
then by induction hypothesis for (A), do.Ti is false in i..-I; since by code it is still
false in 5 , we are done.

(B) By the induction hypothesis, since thcre is no relevant change.

Cale 2: a., = Ci. First note that a ... .- IF-TCERj ends in T', 1,f dining-

well.formedness.

Claims about sin-l:
1. dine.region(i) = T, by above note and Lemma 1(c).
2. do.T(i) = false, by Claim 1 and (A).

(A) by Claim 2 and code, vacuous.

(B) by code.

Case 3: a. = R,. First note that a, ... a,._IIF.TCERi ends in Ej by dining-

well-forncdness.

Claims about Sm-1:
1. dine.region(i) = E, by above note and Leinina 1(c).
2. do.E(i) = false, by Claim 1 and (B).

(A) by code.

(B) by Claim 2 and code, vacuous.

Case 4: am = Ci(B).

(A) and (B) by induction hypothesis and code.

Case 5: a,,, = T.

(A) by code.

(B) By (A) and precondition, drink-region(i) = R in s,-.. By (B), do.E(i)

false in s,-I, and still in s,,,.

Case 6: a... = Ei.

(A) By (B) and precondition, drink-region(i) = C in sn-. By (A), do-T(i) =

false in 5 ,,.-., and still in s,,,.
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(B) by code. 0

Lemma 12: Suppose Dine(B) solves the dinhig philosophers problem. Let e be
an execution of Drink(B) whose schedule is drinking-well-formed. The following
predicat.s are true in every state of e, for any i, j and b.

(A) It there is a current dem(b) message in buj(i,j), then
(a) drink.region(i)= T,
(b) dine-region(i) = C,
(c) b is in reqebotles(i), and
(d) do.E(i) is false.

(B) There is at most one current dem(b) me-sage in bu.(i,j).

(C) There is at most one non-current den(b) message in bu.(i,j).

Proof: Let e = s0als, .. , am~m .... We proceed by induction on ni, which indexes
the states of e.

(A) through (C) are obviously true of so, since it is a start state. Assuming
(A) through (C) are true of s,.-, we show that they are true of aj. We consider
every possible value of am. By Lemma 6(a), ached(e) is dining-well-formed.

Case 1: am = T(B). Only messages in bu(i,j), for all j, are affected.

Remark: By drinking-well-formedness, a, ... a.-, JB-it TCERi ends in Ri(D')
for some B', or is empty.

Claims about sm-:
1. drink.region(i) = R, by Remark and Lemma 1(a).
2. No current dem(b) is in buffi,j) for any b and j, by Claim 1 and (A-a).
3. At most one non-current dem(b) is in bufi,j) for any b and j, by (C).

Claims about sf,:
4. No current dein(b) is in bu.,i,j) for any b and j, by Claim 2 and code.
5. At most one non-current dem(b) is in bu(ij) for any b and j, by Claim 3 and
code.

(A) By Claim 4, vacuously true for buffli,j) for all j.

(B) By Claim 4 for buf(i,j) for all j.
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(C) By Claim 5 for kufiij) for all j.

Case 2: am = E(B). Only dcmb) me.sagcs in bv.fi,j) and buwj,i) are

affected, where (b,j) is in deferred(i) in .i 0,-. Fix such a b and j.

Remark: By drinking-well-fornccliwss. t ... a.,_ jD-TCERj ends in Cj(B).

Claims about S.-I :

1. drink.region(i) = C, by Remark and Lenma 1(n).
2. No current dem(b) is in buffi,j), by Claim 1 and (A-a).

3. At most one non-current dein(b) is in buff(ij), by (C).

4. b is in bottek(i), by choice of b and Lemma 3 (B-a).

5. If dem(b) is in buff(j,i), then dem(b) is current, by Claim 4.

6. At moat one dent(b) is in buff(j, i), by Claim 5 and (B).

Claims about a.m:

7. No current dem(b) is in buff i,j), by Claim 2 and code.

8. At most one non-current deon(b) is in baffji,j), by Claim 3 and code.

9. At most en: dem(b) is in bufj, i), by Claim 6 wid code.

(A) By Claim 7 for buffi,j). No relevant change for buffj, i).

(B) By Claim 7 for bufflij). By Claim 9 for buffj,i).

(C) By Claim 8 for buff i,j). By Claim 9 for buffj, i).

Case 3: a,,. = deliversat(b),j, i). The only inessages affected are denl(b) in

b. uli,j) or bu.j, i).

Claims about s,- :
1. sat(b) is at the head of buftIj, i), by precondition.

2. If dern(b) is in buffj, i), then it is current, by Claim 1.

3. At most one dem(b) is in bu.yj, i), bky Claim 2 and (B).

4. If dem(b) is in buffi,j), then it is current, by Claim 1.

5. At most one den(b) is in bu.f(i,j), by Claim 4 and (B).

Claims about s..:

6. At most one dcin(b) is in bufj,i), by Claim 3 and code.
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7. At most one dem(b) is in buffi,j), by Claim 5 and code.

(A) No relevant changes are made.

(B) By Claims 6 and 7.

(C) By Claims 6 and 7.

Case 4: am = deliveT(req(b),j, i,). If the request is deferred, there is no relevant

change. Suppose the request is satisfied, i.e., -tat(b) is added to buffi,j). The only

messages affected are dem(b) in buj(i,j) or bu(j, i).

Claim. abous m-.i:
1. req(b) is at the head of buffj, i), by precondition.
2. b is in bottle(i), by Claim 1 and Lemma 3 (C).
3. If dem(b) is in bufj, i), then it is current, by Claim 2.

4. At most one dern(b) is in buj(j, i), by Claim 3 and (B).
5. b is in Di n Bj, by Claim 1 and Lemma 1(d).
6. If dem(b) is in buff i,j), then it is not current, by Claims 2 and 5 and Lemma 3

(A).
7. At most one dem(b) is in buffi,j), by Claim 6 and (C).

Claim., about Sm:

8. At most one dem(b) is in biffj, i), by Claim 4 trnd code.
9. At most one dem(b) is in bu.fi,j), by Clhiim 7 and code.

(A) No relevant change.

(B) By Claims 8 and 9.

(C) By Claims 8 and 9.

Case 5: am = deliter(dem(b),j,i). If b is not in botiles(i) in s,,-, then there

is no relevant change. Suppose b is in botile.q(i) in $,t-. The only messages affected
are dem(b) in bu i,j) or buffji).

Claims about s.-,:
1. dem(b) is at the head of buffj, i), by precondition.
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2. b is in bottles(i), by assumption.
3. If dem(b) is in bu.~j, i), then it is current, by Claim 1.
4. There is exactly one dem(b) in bufj, i), by Claims 1 mid 3.
5. b is in B1f Bj, by Claim 1 and Leumma 1(d).
6. If dern(b) is in buffij), then it is nolt-current, by Claim 2 and Lemma 3 (A).
7. There is at most one dcra(b) in buftij), by Claim 6 aud (C).

Claim about sin:
8. There is no dem(b) in buffj, i), by Chlim 4 and code.
9. There is at most one dcns(b) in buffii,j), by Claim 7 and code.
10. If dem(b) is in buffi,j), then it is non-current, by Claim 6 and code (i.e., sat(b)
is added to the end of buff(ij), if it is added at all).

(A) By Claims 8 and 10.

(B) By Claims 9 and 10.

(C) By Claims 9 and 10.

Case 6: a,,, = Ci. First, sUppose drink.rogion(i) i4 T in s Then by (A-d),
no current dem(b) message is in baflij), for any b and j, in . Thus, setting
do-E(i) to true in s,, does not falsify (A-d). There is no relevant change for tile
rest of the invariants.

Now suppose drink-reqion(i) = T in s111 1. We need only consider a dcm(b)

addcd to somc bu(ij) in .,,,. Fix such a b and j.

Remark: By dining-well-formedness, aj ... a,1-I F-TCERj ends in T.

Claims about s,,,-:
1. dine.region(i) = T, by Remark and Lemma 1(c).
2. If dem(b) is in buffi,j), then it, is non-current, by Claim 1 and (A-b).
3. At most one dem(b) is in buffli,j), by Claim 2 and (C).
4. b is not in bottles(i), by code and choice of b.
5. sat(b) is in buff(i,j), or b is in botlcs(j), or sat(b) is in buffj,i), by Claim 4 and
Lemma 3 (A).
6. drink-region(i) = T, by assumption.
7. b is in req-bottle(i), by choice of b.
8. do-E(i) is false, by Claim 1 and Lemma 5 (B).
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Claims about im:
9. The dem(b) nessage added to bu i,j) is current, by Claim 5 and code.
10. drink.region(i) = T, dine.region(i) = C, b is in rcq.boitlc(i), and do-E(i) is
false, by Claims 6, 7 and 8 and code.
11. One current dern(b) message is in buffij), by Claims 2 and 9 and code.

(A) By Claim 10.

(B) By Claim 11.

(C) No relevant change.

Cae 7: am -/R. The only relevant change is to dine.region(i), affecting (A-b)
for i. By dining-weUl-formedness, a, ... am-, IF-TCERi ends in Ei. By Lemma 1(c),
dine.region(i) = E in s.-I, so by (A-b) there is no current dein(b) in buo~i,j), for
any b and j in s,,,-.. By code, the smune is true in a,,,, so (A-)) for i is vacuously
true in 3m.

Cue 8: am = cG(B). The only rek'vant chwige is to do-E(i), affecting (A-d)
for i. By precondition (req-botle.(i) a subset of bottles(i)) and (A-c), there is no
current dem(b) in buffi, j), for any b uid j. By code, the same is true ina,,,, so
(A-d) for i is vacuously true in I,,,.

Caje 9: am = Ri(B). The only change is to drink-region(i), affecting (A-a) for
i. By precondition, drink.region(i) = E in , -o by (A-a), there is no current
dern(b) in bu.(i,j), for any b and j. By cole, the same is true in $,,,, so (A-a) for i
is vacuously true in .

Case 10: am = Ti. The only relevant change is to dine-region(i), affecting
(A-b) for i. By precondition and Lemnm 5 (A), dine-rcgion(i) = R in s,,-., so by
(A-b), there is no current dem(b) in bufij), for any b and j. By code, the same
is true in si, so (A-b) for i is vacuously true in ,S0.
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Ca.ic 11: a,,, = Ei. The only chunges are to di7&(:.rcgioTn(i) and do-E(i), affccL-
ing (A-b) and (A-d) for i. By precondiLion and (A-)), there is no currcnt dcm(b)
in bufi,j), for any b and j. By code, the same, is true in s,,,, so (A-b) and (A-d)
for i arc vacuously true in ,,. 0
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